May 9, 2023

Strategic Reasoning in Resource Allocation

Ayala Arad

Coller School of Management, Tel Aviv University

Based on my work with Stefan Penczynski and Ariel Rubinstein

Resource allocation games

R&D competition over a number of markets

• Election campaign in the US

Cyber security (attacker-defender games)

Spectrum auctions / oil lease auctions with limited budget

Our project

Goals

- A glimpse on the reasoning in competitive resource allocation games
- Detect a linkage in terms of the reasoning process across these games

Method

Choice experiments with additional data:

communication between a team of two players who play as one entity

We analyze choices and written messages

* We study one-shot simultaneous games

Illustration

Colonel Blotto

- Each player allocates 120 troops across 6 battlefields
- In each battlefield:
- You win and get **1 point** if you assigned more troops
- You get **0 points** if you have an equal or a smaller number

- You play against each of the other tournament participants
- Your score is the total number of points you accumulated
- The colonel with the highest score wins the tournament

Our forces: 120 troops

Enemy's forces: 120 troops

Many strategies to consider

A strategy is an allocation of 120 troops across 6 fields

• There are around **250 million** possible strategies

- What would "classic strategic thinking" imply?
- Forming a belief on others' distribution of strategies
- Best responding to the belief

An example for a prediction (belief)

In a 10 players game, suppose that a player believes:

3 players will choose 21-21-21-21-15

4 players will choose 60-60-0-0-0

2 players will choose 31-31-29-28-0-1

- Would you come up with a belief of this form?

- Can you calculate the optimal strategy given this belief?

Multi-dimensional reasoning

(Arad and Rubinstein, 2012)

- Instead of thinking about a distribution of strategies
 (6-component vectors) chosen by others, people think about
 aspects or dimensions of others' strategies
- People decide separately about each dimension of their strategy
- They combine their decisions in the various dimensions to construct a strategy

Dimension 1: Number of reinforced fronts

- The most intuitive strategy is 20-20-20-20-20 ("L0") and it provides a starting point for reasoning
- One can try to win against 20-20-20-20-20-20 ("L1")
 by reinforcing 5 battlefields, say play 24-24-24-24-24-0
- One can try winning against 5 reinforcements ("L2") by reinforcing only 4, e.g. by playing 30-30-30-30-0-0
 - And so on...

Dimension 2^L: Type of assignment (ending digit) to "neglected" fronts

- Should you neglect some battlefields completely? ("L0")
- You can assign 1 troop instead, and win against people who neglected these battlefields (assigned 0) ("L1")
- You may consider assigning 2 troops to win against people who assigned 1 troop, and so on... ("L2")

Dimension 2^H: Type of assignment (ending digit) to "reinforced" fronts

- People intuitively think of multiples of ten ("L0")
- To trap a rival who deploys 30 troops, deploy 31... ("L1")
- To trap a rival who deploys 31 troops, deploy 32... ("L2")

Dimension 3: Order of divisions

- What should be the location of the strong/weak divisions?
- Which battlefields should be neglected?
- Which battlefields should be reinforced?
- Increasing or decreasing order of strength of divisions?

Combining the dimensional decisions

 Suppose that a player considers all the above dimensions, performs two steps of reasoning in Dimensions 1 and 2, and focus on the middle fronts in Dimension 3

- The player may pick, for example, the strategy:
 - 2 31 32 32 21 2

Back to the Start

Our research questions

(Arad and Penczynski, 2022)

- Do people **actually** think in terms of dimensions?
- If so, what are these dimensions?
- Which dimensional decision rules are used? (not today)
- Is multi-dimensional reasoning relevant to additional interactions?
- Could we identify common dimensions in a class of games?

Experimental Design

Participants and procedure

- **Participant:** 250 students
- Each played a number of resource allocation games in our lab:
- Colonel Blotto game
- First-price multi-object auction
- All-pay multi-object auction
- **Compensation:** according to performance in the games
- A team of two anonymous participants **play as one entity**
- A new teammate is randomly assigned in each game

Communication protocol (Burchardi and Penczynski, 2014)

Message Classification

Independent classifications

- Two research assistants classified the messages in each game
- The individual reasoning in a single game (in a message) is classified as either "**multi-dimensional**" or "**other**"
- The classification is based **solely on the text**
- The classification of "multi-dimensional" messages includes:
- **The dimensions** mentioned in the text (84% agreement rate)
 - The dimensional decision rule used in each dimension (not today)

Dimensions

Front = auction / battlefield

	Dimension			
D1	Number of reinforced fronts			
D2 ^L	Type of assignment to disregarded fronts			
D2 ^H	Type of assignment to reinforced fronts			
D3	Considerations of the identity of fronts (assignment order)			

Example 1: Two dimensions in Blotto

Player 16

0-0-0-61-59-0

6 battlefields, 120 troops

Sent Message:

I would sent troops to only 2 fields and let the rest be zero. D1 Because nobody can win 3 fields and when we win 2 fields we can get picked randomly because probabli another team will also win 2 fields but there is no chance to avoid tha the difficulty is just to choose the right fields that is psychology and i dont know so much about that :) if you have a better idea i will change my plans :)

Example 2: Random assignment

lessage from a pilot study in Germany:

Player 1

40-30-20-0-10

5 battlefields, 100 troops

Sent Message: let me explain you my strategy: i have none. i will just assign troops randomly. if you have a better suggestion i will pick it.

Results:

Different Games,

Similar Reasoning

Dimensions frequency in the first game

Dimension	Blotto (n=98)	Auctions (n=58)	All-pay auctions (n=52)
D1	87%	67%	77%
D2 ^L	24%	22%	12%
D2 ^H	22%	60%	23%
D3	43%	66%	56%

Number of dimensions in a message

- About 60% mention **2 or more dimensions** in their message
- About 30% mention only one dimension
- The number of dimensions per message is similar in all games

Benefits of communication analysis

- Confirms dimensional thinking in the Blotto game as well as in multi-object auctions with budget constraints and all-pay multi-object auctions
- Reveals the actual dimensions in players' mind
- Exposes decision rules that are commonly used
- Connects between the reasoning in different games

Thank you!